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A mathematical model is proposed for steady two-dimensional flow around a 
submerged screen. The general problem analysed is the flow in a parallel-sided 
channel partially spanned by a screen, and the fluid is considered to be inviscid 
except at  the screen, where the flow has the required pressure drop. The model is 
constructed by fist replacing the screen with a distribution of sources and then 
manipulating the stream function for this flow so that the mass and momentum 
balances across the screen are satisfied. Consequently the model predicts a flow 
field which is realistic except for the expected discontinuity in velocity between 
the wake and external flow. In  general, the governing equations must be solved 
numerically, but for the important case of a plane screen oriented normal or 
roughly normal to the approaching flow, an approximate analytical solution is 
possible. The accuracy of the model was ascertained by conducting wind-tunnel 
tests on screens of various solidities and orientations, and comparing the measured 
downstream velocity distributions with those predicted by the numerical and 
analytical solutions of the model. Overall, the theoretical results agree well with 
the experimental data, showing that the model is valid for screens of low and 
high solidity, in fact, for pressure drop coefficients up to 10. Comparisons with 
the work of others show that the proposed model is also accurate for the special 
cases of a screen submerged in an infinite flow field and of a screen spanning the 
full width of the channel. 

1. Introduction 
When fluid passes through a screen or gauze, the flow is altered in two ways: 

the static pressure is reduced and the streamlines are deflected towards the normal 
to the screen. The reduction in pressure is usually expressed by the dimensionless 
pressure drop coefficient K ,  defined as K = Ap/$pVzcos2e, where Ap is the 
pressure drop, p the fluid density, V the magnitude of the fluid velocity and 8 
the angle of incidence, i.e. the angle between the oncoming streamline and the 
normal to the screen. The coefficient K is of course a measure of the screen solidity 
(Baines & Peterson 1951), and generally depends on the velocity. However, the 
experiments of Schubauer, Spangenberg & Klebanoff (1950) have shown, for 
screens of various solidities, that K is velocity-independent when the normal 
component V cos 6' is sufficiently large. This feature is analogous to, and in fact 
related to, the constancy of the drag coefficient at sufficiently large Reynolds 
numbers for the flow around submerged bodies. The second change in the flow, 
the deflexion of the streamlines, is generally expressed by the deflexion coefficient 
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Do, defined as the ratio of the tangential velocity after the screen to that before. 
Taylor & Batchelor (1949) showed that 

1.1 28 
+I-- 

sin 20 
20 

D, = - 
sin 20 [I + K cos28]i 

For small 0, this equation reduces to D, = l . i /( i  +K)+, which is a well-known 
and useful approximation, particularly since Do is a function of K only. 

The first comprehensive analysis of flow through screens was carried out by 
Taylor & Batchelor (1949). They were primarily interested in showing how 
turbulence intensity is reduced when the fluid passes through a screen, and to 
this end studied the case of a channel flow in which a non-uniform stream passed 
through a flat screen perpendicular to the channel walls. Their analysis showed 
that a small non-uniformity in the approaching velocity profile is attenuated by 
a factor depending on K and 8/#, where 4 is the angle between the outgoing 
streamline and the normal to the screen. Later Elder (1959) treated the more 
general case of an arbitrarily shaped and non-uniform screen in a two-dimensional 
channel flow. By linearizing the matching conditions at  the screen, Elder obtained 
a linear relation between the upstream velocity profile, the downstream profile, 
the shape of the screen and the variation of K along the screen; hence any one 
of these four quantities can be solved for in terms of the other three. Elder’s 
analysis and the accompanying experiments were for screens occupying the 
full cross-section of the channel, but he mentioned in passing that his technique 
could also be applied to partial screens (occupying a portion of the cross-section) 
providing K < 1. This is one of the first references to the problem of a partial 
screen, and our paper will later show that Elder’s technique cannot properly be 
applied to this case; however, even if improperly applied, the predictions from 
his linearized theory provide a good approximation for values of K up to 1. 
A method of treating the problem of a finite plane screen in an infinite flow field 
was proposed in some early work by Kiichemann & Weber (1953). They modelled 
the flow by superposing two vortex distributions, one along the screen and the 
other along the wake boundary, on a uniform flow. Their method appears to 
be difficult to employ when dealing with a partial screen, because the vortex 
strengths and boundary location are not known a priori and must be found by 
trial and error. The technique, however, has been successfully applied to flow 
through a cooler block in a diffuser (physically similar to a sheet of honeycomb 
at the end of a smooth expansion in a duct), where the problem is tractable 
because the direction of the downstream flow is fixed by the duct and by vanes 
within the cooler block. Another solution for a full screen inside a duct was 
recently put forward by Lau & Baines (1968), who solved for the screen shape 
corresponding to specified upstream and downstream velocity profiles for a 
stratified two-dimensional flow in a straight duct. Their solution, which predicts 
the curvature of the screen, requires that the local inclination of the screen be 
everywhere small. 

A different type of screen problem, with a different analytical approach, was 
treated by Taylor (1963). Taylor considered the case of a screen submerged in an 
infinite two-dimensional flow field, and his method of solution consisted of re- 
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placing the screen by uniformly distributed sources, which when combined with 
the approaching flow produced a realistic flow field and generated a prediction 
of the screen drag coefficient in terms of K.  In  his solution, continuity through the 
screen is not satisfied and consequently only the flow field outside the wake can 
be determined. As will be shown later in this paper, Taylor’s solution is a good 
approximation if K is limited to small values. 

As the above review suggests, most known solutions of screen flows areperturba- 
tion solutions, generally limited to small deviations from parallel flow and/or to 
small values of K ;  also, most known methods are for situations where the screen 
spans the entire cross-section of the flow. The objective of the present work is to 
find the general solution for two-dimensional flow around and through a partial 
screen in a straight channel; hopefully the solution will be valid for the full range 
of K ,  and will include the special cases of a full screen in a confined flow and 
a finite screen in an infinite flow field. The approach taken here is not to solve the 
governing equations directly, but rather to formulate a mathematical model 
which satisfies the governing equations and the most important boundary 
conditions. 

The problem studied in this paper is a real one, since it pertains to numerous 
practical situations in which flow passes partly through and partly around 
a porous body; common examples of such bodies are parachutes, fish nets, 
natural and artificial wind breaks and the slotted injection disks in oil combus- 
tion chambers, which are used to  create a low-velocity zone suitable for ignition. 
The results presented herein can be used to determine the surrounding velocity 
field, especially in the important wake region, and to estimate the drag force on 
the porous body. 

2. A mathematical model 
When a screen partially fills the cross-section of a channel, the velocity field 

may be conveniently divided into two distinct regions, one outside and the other 
inside the wake. These regions are designated I and I1 respectively in figure 1, 
which shows the general pattern for the two-dimensional flow and which also 
defines some of the parameters of the problem; the screen, designated by a series 
of dots in the diagram, is an arbitrarily curved sheet of height A. It is assumed 
throughout the analysis that the fluid is inviscid in both regions except in the 
immediate neighbourhood of the screen; thus Bernoulli’s equation applies along 
all streamlines in the flow field, but not across the screen. For a uniform flow far 
upstream, the flow is irrotational in region I, while in the wake region the flow 
will generally be rotational because of non-uniform energy losses along the screen. 
Consequently, Vz$I = 0 is the governing equation for the stream function in 
region I and V2$,, = f($,,) holds in region 11, where f is an unknown function 
representing the vorticity generated at  the screen. Regions I and I1 are separated 
by the streamline AC, which passes through the tip A of the screen, and across 
which there is a theoretical step change in the velocity. 

To construct the mathematical model, the screen is first imagined as a con- 
tinuous distribution of sources. When the flow from the source distribution is 
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FIGURE 1. General features of two-dimensional flow around and through a screen in 
a channel. The diagram also defines some of the variables in the analysis. 

added to the approaching channel flow, the resulting pattern is very similar to 
that shown in figure 1. Let $(x, y) represent the stream function for these com- 
bined flows, where x and y are Cartesian co-ordinates having their origin a t  the 
base of the screen. The essence of the present technique is to set $I equal to $ 
in region I and then to require that the streamline pattern for $11 be the same 
as that for $ in region 11; that is, if u and v represent the horizontal and vertical 
velocity components respectively, then we require that vII/uII = v/u, or that 

- a$II/ax - - a$/ax 

a$IIlaY aPPY * 

This stipulation is satisfied by 111 = g($ )  in general, but the particular form 
which is convenient for our purposes is $11 = B($)$. By this representation, 
B($) may be considered an attenuation function, with values between 0 and 1. 
The upper limit is approached as K -+ 0 and the screen effectively vanishes; 
the lower limit is realized when K -+ 00 and the screen becomes a solid plate with 
no flow behind it. Consequently, the stream function of the combined flows is 
not by itself the solution of the problem; rather, it acts as the basic function on 
which the model is constructed. 

Since the attenuation function B($) does not change the streamline shape, the 
flow patterns for regions I and I1 fit together exactly along the dividing stream- 
line AC (figure 1). However, it is easy to show that the static pressure is not 
continuous across AC. The difference depends on the variation of velocity along 
the streamline, but as Koo has shown in his (1971) thesis, AC is very nearly 
a free streamline since the velocity along it is within 2 yo of being constant, except 
in the immediate neighbourhood of the screen tip, where it becomes infinite 
owing to the logarithmic singularity of the source flow there. Consequently, the 
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model produces a discontinuity in pressure between regions I and 11, but this 
fortunately turns out to be small. 

One of the unknowns in the present problem, then, is B($), and it will be 
shown in the forthcoming analysis that the other unknown is the strength dis- 
tribution of the sources; these two unknowns will be found by satisfying mass and 
energy balances across the screen. 

3. The source solution 
The first step of the method is to find $, the stream function for an arbitrary 

but continuous distribution of sources in an approaching uniform inviscid flow. 
Let the location of the screen OA be designated by the equation [ = g ( r ) ,  where 
5 and 7 are the co-ordinates of the screen in the x and y directions respectively, 
as shown in figure 2; since h is the projected height of the screen, 0 6 7 < A. 
The function g ( r )  is assumed to be known and single-valued, and in complex 
notation the screen may be represented by the single variable 6 = 5+ ir. The 
source strength per unit length along the screen may then be denoted by y( ( L J ) ,  
and in order to find the two-dimensional potential flow field generated by y 
within a channel, the method of images is employed. The lower wall y = 0 is 
removed by adding a source distribution, denoted by OA' in figure 2, to the 
original distribution making the total distribution symmetric. The combined 
distribution A'OA is then repeated on the horizontal lines y = & 2, f 4, f 6, 
etc., as illustrated in the figure. Accordingly, the entire source system may be 
represented by the equation 

&&(a) = g(lrl)+i(r+2n), - A  < < h (n = 0, & 1, 5 2  ,... ). 
To construct the potential function s1 for this system of images, consider the 
infinite series of points Cn(ro), - A  < qo < A, located two units apart along the 
vertical line go = g(T,,). At each point, an infinitesimal distance along the curve 
Cn is represented by l d d l ,  so that the source strength there is y( Il&J) Idi&l. It is 
shown in Robertson (1965, p. 136) that the complex potential function for an 
infinite number of sources equally spaced two units apart and each of strength 

2n 22 

where z is the standard complex variable x+iy. Since this function represents 
the contribution from a segment of the source distribution, the potential function 
Q(z) for the entire source system is found by integrating along the source line 
from A' to A ;  that is, 

r(151) Id51 Insin n(zTC), 
Y(l5l) Id51 is 

where 6( 
variable of integration in the above integral, then 

A )  = g(h) k ih. If g(7) is a single-valued function and if 7 is made the 
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FIGURE 2. The arrangement of images for the source distribution. 

in which r( 171) has been substituted for y( I<() [(dq/dq)2 + 114. The modulus sign 
around q may be removed by rewriting: 

To this is added z + G ,  the complex potential for the approaching uniform flow 
(the velocity of the uniform stream has been set equal to 1 without loss of 
generality); thus the stream function $ is given by 

$(x,y) = Im[SJ(z)+x+c]. 

According to the procedure set out earlier, the stream functions for regions I 
and I1 are 

PI satisfies Laplace's equation and the boundary conditions on the walls in 
region I; $11 satisfies the boundary condition on the lower wall and matches with 

along the dividing streamline. Since the only unknown in $ is the function 
I?(?), PI and pII are given in terms of the two unknowns r(q) and B($). 

$I@, Y) = $(x, Y), $I& 9) = W )  $(x7 Y). 
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4. The matching conditions 
The two unknowns can be found from two matching conditions at  the screen. 

The first condition is that the velocity U normal to the screen be continuous 
across the screen; that is, at  any point 7 on the screen 

W7) = %(7), 
where the subscripts continue to refer to regions I and 11. 

The second matching condition starts with the relation 
across the screen AP(7) = WPu;(7). 

(1) 

for the pressure drop 

Using this relation in conjunction with Bernoulli’s equations on a streamline 
outside the wake and on the two segments of the streamline $ = $s passing 
through 7, the following energy equation can be derived, and is the second match- 

(2) ing condition: 

where u2 and u3 are the far-downstream velocities in region I and on $s respec- 
tively, and V, and V,, are the tangential velocities on each side of the screen 
(figure 1).  The far-upstream velocity u1 is assumed to be uniform. The six 
velocities in (I) and (2) can be found from PI and $11, and will be functions of 
r(7) and B($); accordingly, substitution of the velocities will yield two equations 
for the two unknowns I? and B. Before attempting to solve for I? and B, it  should 
be noted that we have not attempted to satisfy the deflexion condition at the 
screen. This shortcoming will be discussed later in the paper, and for the moment 
we recognize that its inclusion would overspecify the problem for I? and B. 

Solutions of the problem for plane screens will be discussed in three sections: 
(i) an analytical solution for a normal (i.e. perpendicular) screen, in which certain 
approximations are made but the resulting errors appear to be very small, 
(ii) an analytical solution for an inclined screen, which can be achieved only by 
further approximations and with a consequent loss in accuracy, and (iii) a 
numerical solution for normal and inclined screens, which retains all terms 
and thereby provides solutions by which the accuracy of the analytical solutions 
may be gauged. 

K W r )  = u; - U W S )  + V,2,(7) - W7),  

5. Solutions for plane screens 
5.1. An analytical solution for a normal screen 

This section will show that, if the tangential velocities in the second matching 
equation are neglected, then the source distribution is uniform, in which case 
the flow field is readily determined. We start the procedure, however, with the 
unabridged matching conditions (I) and (2), for which the velocity components 
U,, UII, u2, us, V, and V,, must be determined. 

The horizontal velocity component in region I is uI = Re {d( Q + x f c)/dx}.  
Using the previously derived expression for !2, and setting g(7) = 0 for a normal 
screen, yields 
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The corresponding component in region I1 is 
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UII(X, Y) = a$II/aY = E($) u(x, Y), 
where E($) = B+$dB/d$ and u(x,y)  has the same mathematical expression 
as uI. Hence the far-field velocities are 

The components normal to the screen, U, and UII, cannot be found as simply as 
the above velocities, and in order to proceed straightforwardly in this part of 
the text, the analysis for these velocities has been set aside in the appendix. The 
appendix shows that 

u, = y) = 1 - m y ) ,  (44 

( 4 b )  v,, = uII(0, 9)  = E($J [ I+ Qr(y)l* 
In  the same manner, the vertical velocity in region I is wI = Im {d( f2 + x + c)/dz), 

or 

sin n(y - 7) sinn(y+q) + P(X’ ” ’) = a “ cosh nx - cos n ( y  - 7) Gosh n-x - cos n ( y  + 7) where 

Therefore the components tangential to the screen are 

KI = E($J %(O,  Y). ( 5 b )  
On substituting for U,, u2, u3, V, and V,, in ( 2 ) ,  the second matching condition 
becomes 

E’ can be expressed as a function of r (y )  by combining the first matching condition 
and ( 4 ) ,  namely 

Also, if the tangential velocity at  the screen is much less than the normal velocity, 
i.e. if V: < U:, then the second integral in (6) can be neglected. By this approxima- 
tion, (6) is reduced to a relation for l?(y), and since the only other terms appearing 

in the equation, K and r(7) dy, are both constants, consequently r ( y )  is also 

a constant, say rs. In  this case, then, the source strength is uniform over the 
length of the screen, and given K and A ,  may be found from the approximate 

E = (1 - Q ~ ( Y ) ) / ( l +  Qr(Y))- (7) 

l o A  
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FIGURE 3. The source constant D as a function of the screen coefficient K ,  for various 
values of the screen height h from (8). 

form of (6). An equivalent procedure is to follow Taylor (1963) and introduce the 
source constant D, defined by rs = DKU, = 2DK/(2 +DK). This solution makes 
D the unknown in (6), and with the V 2  term neglected, the equation becomes 

K =  

The solution of this implicit relation is given graphically in figure 3, for various 
values of K and A. 

Using the substitution for rS, the far-field velocities may be expressed in 
terms of D, K and A:  ADK ul= l-- 

2+DK’ 
ADK 

u2 = 1+- 2+DK’ 
1 ADK 

u3 = m ( 1 + m ) *  

The downstream velocity profile, as given by u2 and us, is now known and will 
be exhibited later in the paper alongside other predicted velocity distributions 
and experimental data. 

Another result which may be computed is the drag coefficient C, for the screen. 
Since +KpUf 

=- 
pressure drop c -  

= upstream kinetic head *pu: ’ 
and since U, and u1 are known in terms of K ,  D and A, 

H 
cD = (1 + $DK)2 [ 1 - hDK/(2 + DK)I2‘ (9) 
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This formula correctly yields C;, = K when h = 1, and also predicts the drag 
coefficient of a screen submerged in an infinite flow field, that is, for h = 0; this 
latter prediction will be compared with Taylor’s (1963) findings in 3 8. 

5.2. An analytical solution for  an inclined screen 

For the case of a plane screen inclined at an arbitrary angle to the channel walls, 
an approximate analytical solution may be found in a manner similar to that for 
a normal screen. The equation for the screen is now g ( q )  = alq( ,  - h 6 q 6 A,  
where a: = tan-la is the angle which the oncoming parallel flow makes with the 
normal to the screen. The horizontal velocity in region I is then 

1 
Gosh n(x - aq) - cos n ( y  - 7) where H(x, y, q)  E & sinh (n(x - uq)> 

I .  1 
+ cosh n(x - a?) - cos n ( y  + q )  

The far-field velocities ul, u2 and u3 are determined from the above equation by 
letting x -+ 5 00; these are found to be the same as for a normal screen, i.e. they 
are given by (3).  The velocity components on the screen are found by letting 
x -+ ay & , where the notation indicates whether the approach is from the 
right ( + ) or left ( - ). When x -+ ay k in H(x ,  y, q ) ,  it becomes apparent that H 
is unbounded as 7 + y & and is small otherwise; moreover, H approaches an 
impulse function as a -+ 0. Since a is assumed to be small, and since we wish to 
proceed with an analytical solution, let H(ay k , y, q )  be approximated by the 
Dirac delta function t- n8(y - q), in which the factor n ensures that the integral 
of H has the required value of unity. With this approximation for H, the horizontal 
velocity components a t  the screen are again 

w,(ay-, Y) = 1 - $WY), 
uII(aY+, Y) = E(llr,) [ I +  +r(Y)l. 

Turning now to the vertical component of velocity in region I, 

where 

I. sin n(y - q )  sinn(y+q) + 
cosh n(x - a7) - cos n(y - q)  cosh n(x - aq) - cos n(y + q )  

On the screen, as x -+ ay & ,  
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Having found the horizontal and vertical components, the normal and tangential 
velocities to the screen are 

U, = u,(ay-, y) cos a - q ( a y  - , y) sin a = uI cos a - w- sin a, 

U,, = u,,(ay+, y) COB a - vII(u~+, y) sin + = uII cos a - Ev+ sin a,  

V, = uI sin a + w- cos a, V,, = uII sin a + w+ cos a. 

If these expressions are used, (I) becomes 

(I - &r(y)) cos a - v- sin a - I - &I?(y) - w- tan a 
(1 +&??(y)) cosa- w+sina 1 + &qY) - w+ t ana  

E =  - 

and (2) becomes 

- [ ( i -y)s ina+w-cosa]2 .  (10) 

- ir)/( 1 + &I?) and 

L \  

If w* is small, i.e. much less than one, then E E ( 3  

uI c1 ( i - ~ r ) c O s a .  

By these approximations, (10) is simplified to 

so that F(y) is again a constant, I?,, which is therefore given by the equation 

When K ,  a and h are specified, I?, may be found and consequently the velocities 
ul, u2 and u3 may be calculated. Such calculations have been carried out for 
a modest variation of the parameters and the results, like those for a normal 
screen, will be presented later. It should be noted that the above relation makes 
no distinction between backward- and forward-tilting screens. To be consistent 
with the approximation that wi < 1, the solution associated with the above 
equation is expected to be most useful for small values of a and up to moderate 
values of K.  

5.3. A numerical solution 

In  the previous sections, analytical solutions were possible only by ignoring the 
vertical component of velocity at  the screen. A more general solution did not 
seem feasible because of the nonlinear nature of the integral equations for I’(q), 
and consequently a numerical technique was devised to solve these integral 
equations, including the previously neglected terms, and so obtain a more 
accurate representation of the flow field. A complete description of this technique 
can be found in Koo’s (1971) thesis; although the method is significant in some 
respects and might deserve more attention, only a brief outline will be presented 
in this section. 

The numerical technique was essentially an iterative scheme t o  fmd a func- 
tion I’(q) which satisfied (10) for ten values of q;  that is, at ten equally spaced 
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locations along the screen. This was achieved by assuming an initial distribution 
for I?, iterating about that solution to generate an improved estimate for I? 
and then continuing the iterations until I' satisfied (10) to sufficient accuracy. 
The high-speed computations were carried out for h = 0.5 and for all combinations 
of 01 = 0, .t 30" and 45" and K = 3.0, 4.6 and 7.9; these parameter values were 
chosen to match conditions in concurrent experimental work. The downstream 
velocity profiles predicted by this numerical solution will be presented in $8, 
where they will be compared with experimental data for these conditions and 
with the corresponding analytical solutions. 

6. Elder's linearized theory applied to a partial screen 
It was mentioned in the introduction that Elder (1959) believed his linearized 

theory could be applied to partial screens, providing K < 1. In  order that this 
paper be as comprehensive as possible on the topic of partial screens, Elder's 
theory will be developed here for this case, and the results will be compared with 
the predictions of our source model and with the experimental data. 

Elder's general solution for the velocity U,, downstream of a full screen of 
arbitrary shape and variable resistance is, in his notation, 

u,, - 1 = A(& - 1) - Q( 1 - A )  s + E H .  

When the upstream velocity U-, is uniform and the screen is plane, the relation 
reduces to 

U+,(y) = I +( 1 - A )  S + ( 2 E B T / n )  In cot +ny, 

where T = tang; A ,  B and E are known algebraic functions of K(y) and yo, 
and yo and S(y) are the mean value and deviation respectively of the effective 
pressure drop coefficient for a screen of variable resistance, as defined by 

K C O S ~ O ~  = ~ o ( l + ~ ) .  

Elder assumed that S was everywhere small, i.e. S < 1, in order to complete the 
linearization of the problem. 

To apply the above results to a partial screen, the solidity of a full screen is 
considered to be discontinuous; that is, the screen has a non-zero coefficient K 
up to height h and then K is assumed to be zero for the remainder. In  this way 

yo = AK C O S ~  01 

and 

This of course means that S < 1 is no longer true. If this is disregarded in order 
to use the linearized equation, the far-downstream velocities are 

u2 = 1 - +( 1 - A )  ( l / A  - 1) + (2EBT/n) In cot iny, 

u3 = 1 + +( 1 - A )  + (2EBTI77) In cot &my. 
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FIGTJRE 4. The wind tunnel used in the experiments. The rectangular test section has 
a width of 3 in. in the direction normal to this page. 

I n  order to assess the accuracy and range of validity of the mathematical 
model, as provided by the analytical and numerical solutions, a series of tests 
was conducted in a low-velocity wind tunnel. The experimental facility is shown 
schematically in figure 4. As indicated in the sketch, the screen configuration was 
symmetric about a horizontal centre-plane, thereby eliminating the boundary- 
layer effect of one wall, as well as doubling the working length of the test section 
and thus making it possible to measure the 'far-downstream' velocities within 
the 18 in. length of the section. Three different screens were used. Initial measure- 
ments with normal screens spanning the entire cross-section revealed that the 
minimum air speed above which all pressure drop coefficients were independent 
of velocity was 45ft/s, consequently all tests were conducted with the free- 
stream velocity above this value. The test screens, which were half the height 
of the channel, had measured K values of 3.0, 4-6 and 7.9, and were inclined at 
angles of 0", 45". For each combination of these two parameters, 
the downstream velocity distribution was measured using a stagnation-type 
tube, and the results are presented in the next section; the data will be given in 
terms of the normalized velocity U+,,,/U-,,,, where U-, is the uniform upstream 
velocity. 

The wind tunnel was also appropriate in that the size of the mixing layer, the 
region between the wake and the external flow, was not large. Since the mathe- 
matical model is based on inviscid-flow theory, the solution generates two distinct 
downstream regions, with a step difference in velocity across the dividing stream- 
line, as shown for example in figure 6. In  a real viscous flow, the discontinuity is 
replaced by a mixing layer, the thickness of which has been established by 

30" and 



526 J.-K. Koo and D. F. James 

l o -  

0 9  

0 8  

& 0 7  
d 
+ 0 6 .  @ 

+ 0 4 .  

R 

0 5  
p: 

8 0 3  

0 2  

0 1  

0 

I I I I I I 1  1 1  1 I I , , (4 
- 

+=0 8 
- 

$=0 6 4 

Dividing streamllne, +=0 36 - y=O 4 

# = 0  2 

/ - 

/ - 
I I I I I I l l  

/ 
I I t , ,  v ,  + = 0  

1 .o 

0.8 

a 

f ,  9 6  

a 
a 
3 0.4 

z 

s .+ 

t 
0.2 

1 .o 

0.8 

a 

f ,  9 6  

a 
a 
3 0.4 

z 

s .+ 

t 
0.2 

\ 
1 , , + = p  , 1 , I I \ 1 1 1 l l  

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 
0 

Normalized horizontal distance, z 

FIGURE 5. Streamline patterns predicted by the source model for (a;) a, low-solidity forward- 
tilting screen ( K  = 3.0, CL = 45") and ( b )  a high-solidity backward-tilting screen ( K  = 7.9, 
a = -450). 

theoretical and experimental methods (Gortler 1942). Letting 2 be the distance 
along the dividing streamline and y the distancenormal to it, Gortler'spaper shows 
that the local velocity in the mixing layer reaches 99 % of the external velocity 
at  a distance y = 0 .10~ .  Calculations made with the present source model show 
that the downstream velocity distribution is within 1 % of its finaI profile a t  
a downstream distance of one channel height, indicating that the mixing layer 
there should occupy no more than 20 % of the channel height. With viscous effects 
thus confined to a small region, the inviscid regions can be easily identified for 
comparisons with the theoretical predictions. 
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FIGURE 6. Typical experimental and analytical results for the velocity profile behind a 
normal (perpendicular) screen. h = 0.5, K = 3.0. a, experimental data; -, analytical 
result, source model ; -. -, Elder's linearized theory. 

8. Results 
Most of the results presented in this section are for the downstream velocity 

profile, as determined by experiment and as predicted by the analytical and 
numerical methods in $35 and 6. Before showing these results, it  might be 
informative to display typical streamline patterns generated by the source model; 
two such patternsare shown in figure 5, figure 5 (a) being for a low-solidityforward- 
tilting (a > 0) screen and figure 5 ( b )  for a higher solidity, negatively inclined 
screen. Each pattern indicates the dividing streamline and the extent to which 
the streamlines are deflected by the screen. 

Results for normal partial screens are presented in the next five graphs, 
figures 6-10. The results in figure 6 are for the typical screen conditions, h = 0.5 
and K = 3.0; the figure includes the experimental data, the velocity profile 
predicted by the analytical solution of the present model ($5.1) and also the 
profile predicted by Elder's linearized theory ($ 6). The experimental data in 
figure 6 indicate that the mixing layer occupies about 15 yo of the channel height, 
in accordance with the estimate made earlier, and consequently the inviscid 
regions are easily distinguished. 

To provide further comparisons between theory and experiment for a normal 
screen, the predicted and experimental values of the downstream velocities u2 
and u3 were plotted for it range of K .  The results for u2 in figure 7 indicate that the 
source model is very accurate for K as high as 9. The predictions from Elder's 
theory indicate that his method is reliable for K a t  least up to one; K is not limited 
to values much less than one, as Elder presupposed. Figure 8 is a similar graph 
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FIGURE 8. A comparison of analytical and experimental results for the wake velocity u3 
as a function of the screen coefficient K ,  for six normal screens. Notation as in figure 7.  
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0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Far-downstream drop velocity profile, u( + co, y)/ul 
FIGURE 9. A comparison of analytical (solid line) and numerical (broken line) solutions of 
the present source model for the velocity distribution behind a normal screen; h = 0.5. 

for the other downstream component us, and demonstrates a lack of agreement 
between the source model and experiment, a somewhat surprising discrepancy 
in view of the excellent agreement in figure 7. This lack of agreement, it was 
found, resulted from a shortcoming of the experiment and not the theory; more 
specifically, it  was due to a boundary-layer effect downstream of the screen. 
This effect was in the form of a bulge in the velocity profile at  the edge of the 
boundary layer, such that the local velocity was higher than the main-stream 
velocity: up to 10% higher, in fact. This phenomenon, which may be termed 
the bulge effect, has been thoroughly described by Lau & Baines (1968) in 
appendix B of their paper, and is expected when K is greater than one. One 
consequence of this excess velocity in the present work was a reduction in the 
mainstream velocity, since the total flow rate in the duct remained constant. This 
mechanism thus explains why the measured values for us are below the theoretical 
curve in figure 8. It also accountsfor the good agreement for the other downstream 
velocity u2 in figure 7; the flow in this region did not pass through the screen and 
accordingly was not influenced by the bulge effect. There are additional ramifica- 
tions of the bulge effect which affect subsequent data, and these will be discussed 
later in this section. 

The analytical solution for a normal screen neglected the tangential velocities 
a t  the screen, and in order to assess the resulting error, the analytical results were 
compared with numerically computed results which included these terms. The 
comparison is shown in figure 9 for four values of K and demonstrates that the 
approximate solution given by the analysis provides an excellent estimate of 
the downstream velocity distribution; the major discrepancy is near the dividing 
streamline, but this is a minor concern since this part of the flow is a mixing layer 
for a real fluid, in which the velocity profile is continuous and not abrupt 
as shown. An important feature of figure 9 is that the velocity profile given by 

F L M  34 
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FIGURE 10. The drag coefficient of a plane screen normal to an infinite flow field ( A  -+ 0). a, experimental data of Taylor & Davies. 

the numerical solution is uniform over most of the wake, showing that the 
approximate analytical solution, which yields a constant source strength and 
consequently a uniform downstream velocity, is indeed very accurate. 

Since the present mathematical model has its origin in Taylor’s (1963) source 
model, the results predicted by both models will be compared. As suggested 
earlier in $5.1, this comparison will be in terms of the drag coefficient C, for 
a two-dimensional screen in an infinite flow field. This corresponds to letting h 
approach zero in our model, which from (9) predicts C, to be K/(1 + +DKJ2. This 
equation is compared with Taylor’s result C, = K/(  1 + $K)2 and with experi- 
mental data obtained by Taylor & Davies (1963) in figure 10. The three results 
suggest that the present model is more accurate than Taylor’s, especially for 
values of K above 1, notwithstanding the experimental point a t  K 2: 4-5. This 
point appears to be suspect, especially in relation to the next point, since the two 
suggest the unlikely result that C, decreases as the solidity increases; it is much 
more reasonable that C, increase monotonically with K ,  as the present model 
predicts. 

Some typical results for inclined screens are presented in figures 11 (a )  and ( b )  
and figures 12 (a)  and ( b )  each one showing, for a given set of experimental con- 
ditions, four downstream velocity profiles: (i) as measured, (ii) as predicted by 
an approximate solution of the source model, (iii) as given by a numerical solution 
and (iv) as predicted by Elder’s linearized theory. The results in figures 11 and 12 
were selected for presentation because they represent a wide variation in the 
experimental conditions; further results for intermediate conditions are available 
(Koo 1971), but these only confirm the trends illustrated in the four graphs and 
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Far-downstream velocity, u( + co, y) /u ,  
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( b )  

FIGURE 11. Analytical, numerical and experimental results for (a) a forward-tilted and 
(b) a backward-tilted screen of moderate solidity. - -, analytical solution of present model; 
-.- , Elder's linearized theory; - , numerical solution of present model; m, experi- 
mental data. h = 0.5, K = 3.0. (a) a: = 30". ( 6 )  a: = -30'. 

therefore are not included here. The first two graphs, figures 11 (a)  and (a), are 
for a low-solidity screen, K = 3.0, a t  two moderate angles of inclination, 
a = & 30". Both figures show that the velocity predicted by the numerical 
solution is in excellent agreement with the experimental data. The two approxi- 
mate solutions, cases (5) and (iv), are generally within 10 yo, which is reasonable 
since the flow distortion here is moderate. Elder's theory predicts the correct 

34-2 
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FIG~RE. 12. Analytical, numerical and experimental results for (a) a forward-tilted 
( b )  a backward-tilted screen of high solidity. h = 0.5, K = 7.9. (a)  a = 45". (b)  a = - 
Other notation as in figure 11. 

and 
4 5 O .  

shape for the velocity profile in the wake but not in the external field, and the 
opposite is true for the analytical result. The analytical method, it will be 
remembered, yields a uniform velocity in the wake, which is proved in figures 
11 (a) and ( b )  to be a good estimate of the average velocity for the actual dis- 
tribution. 

The results for the most extreme test conditions, K = 7.9 and CI. = 5 4 5 O ,  are 
showninfigures 12 (a) and (b ) .  In the former, the agreement between thenumerical 
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results and the experimental data is still good. The external velocity predicted 
by the analytical method is accurate, but the uniform wake velocity is no longer 
a suitable approximation to the actual profile. Also, Elder's solution is not 
a good approximation. In  figure 12 ( b ) ,  none of the predictions appears to be close 
to the experimental data. Actually, the numerical curve is considered to be the 
most reliable since the experimental data have been influenced significantly by 
the previously mentioned '.bulge effect '. The understanding of the bulge effect 
for this case requires a more thorough discussion than was presented earlier. 
I n  the boundary layer behind the screen, the pressure is larger than in the main 
flow and this difference can alter the flow in two possible ways. One consequence, 
as described earlier, is a bulge in the boundary-layer velocity profile accom- 
panied by a velocity reduction in the core of the wake; the second is an increase 
in the average downstream pressure. The predominance of one of these con- 
sequences depends on the relative strength of the bulge effect along the length 
of the screen: that is, since the effect depends on Ap or KpU2,, and since U, varies 
along the screen, the effect varies along the screen. The effect at the tip is par- 
ticularly important. For normal screens and for forward-leaning ones (a  > 0) ,  the 
streamlines approach the screen most obliquely a t  the tip as shown in figure 5 (a), 
so that U, and consequently the bulge effect is small there compared with that 
on the rest of the screen. Since the bulge effect for this case is confined to the core 
of the wake region, the first consequence dominates and the wake velocity is 
accordingly reduced. Por a backward-leaning screen (a < 0) ,  the streamline 
pattern in figure 5(b )  shows that the fluid passes obliquely through most of the 
screen, but not at  the tip, where the flow is nearly normal. For this case, the 
maximum bulge effect is at the tip, and since the flow there is not confined as in 
the wake, the second consequence will predominate.This means that the average 
pressure just behind the screen tip is increased; this influence will be carried 
downstream, so that the pressure all along the dividing streamline is increased, 
including points far downstream. Consequently, by Bernoulli's equation, the 
external velocity us will be reduced, as will the wake velocity u3 near the dividing 
streamline; by continuity, u3 in the remainder of the wake must increase. These 
changes in the downstream velocity distribution form precisely the pattern 
indicatedin the comparison of the experimental and numerical datain figure 12 (b ) .  
Additional data for other backward-tilting screens showed the same pattern, 
with the discrepancy between the experimental and numerical results increasing 
with K and with the negative angle of the screen. 

By considering special cases of the present source model, two further com- 
parisons can be made between the model and previous work. When h -+ 1 and 
K is small, the situation represents a very porous screen across the full height of 
the channel. Elder's (1959) theory is particularly appropriate here and predicts 
the downstream velocity profile in terms of a universal co-ordinate containing 
the solidity of the screen and its angle of inclination. Since the results from our 
model cannot be expressed in terms of this universal co-ordinate, the comparison 
is made in figure 13 for two particular, but representative, cases: (a) K = 2.2, 
a = 45" and (b )  K = 5-2, a = 30'. The agreement in figure 13 is very good, re- 
confirming the validity of the source model at  low values of K.  At the other 



534 J.-K. Koo m d  D. P. James 

1.0 

0.8 
a 

3 
0.6 

a 

0 
-4 -3 -2 - 1  0 1 2 3 4 

Far-downstream universal velocity (Elder’s notation), (u+, - 1) EBT 

FIGURE 13. The downstream velocity distribution predicted by the present model (solid 
line) and by Elder’s linearized theory (broken line) for the case of a full screen, h = 1. 

extreme K --f 00, the screen becomes impermeable, and it is then necessary to 
compare the results predicted by the present model with those given by free- 
streamline theory for a plate attached to the channel wall, i.e. for a two- 
dimensional orifice. This comparison is provided in figure 14 for three angles of 
inclination and for the full range of screen heights. The agreement is marginally 
satisfactory for the normal screen and perhaps for the forward-leaning one; this 
result, along with the previous results for finite values of K ,  suggests that the 
present mathematical model is useful for screens of high solidity, but that it 
cannot be extended to the limiting case K -+ co. 

9. Discussion and conclusions 
It appears that the source model proposed in this paper accurately represents 

the two-dimensional flow around and through a screen, judging by the agreement 
of the experimental data with numerical solutions of the model. The experimental 
facility was not adequate to determine fully the region of validity for the model, 
but the data suggest that the solutions are accurate for screens of all heights 
and with K values as high as 10, perhaps higher. An approximate analytical 
solution of the model provides results which are algebraic and therefore easily 
applied; in this analysis, the vertical velocity a t  the screen may be ignored for 
certain screen conditions, which results in a uniform source strength along the 
screen and consequently a straightforward algebraic solution. The comparison 
of this solution with the numerical solution and experimental results indicates 
that this approximation is excellent for normal screens and useful for forward- 
leaning ones. 

The major shortcoming of the model is the unsatisfied deflexion condition a t  
the screen. As mentioned previously, there are not enough unknowns in the 
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FIGURE 14. Comparison of the results from free-streamline theory (broken line) with those 
from the present model (solid line) when the screen solidity becomes infinite, K -+ CO. 

problem to meet this matching condition as well. Yet the model, as it is, predicts 
deiiexions of the right order of magnitude. For normal screens, ( 5 )  reveals that 
E is equivalent to the deflexion coefficient Do. When I’ in ( 7 )  is constant and set 
equal to 2DK/(2+DK) as before, then E becomes (I  +DDK)-l, which is a good 
approximation of the formula De = 1-1/(1+ K)%- €or values of K up to 5 .  Koo 
(1971) has shown that the equivalence of E and Do holds for inclined screens 
as well, and consequently E may be compared to  De calculated from Taylor & 
Batchelor’s formuIa given in the introduction. This comparison has been carried 
out for a variety of cases in Koo’s thesis and shows that E(7) not only has the 
same behaviour as De(7), but is often numerically close to Do as well. Hence the 
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present model, without further modifications, roughly satisfied the deflexion 
condition at  the screen. 

Some further insight about the model may be gained by integrating the dif- 
ferential equation which defines E in Q 5.1 ; this procedure shows that B is related 

When E is constant or approximately so, as in the analytical solutions, then 
B = E ,  and consequently a simple interpretation of B is that it is equivalent to 
the deflexion coefficient. 

A more refined mathematical model was attempted by adding a vortex dis- 
tribution to the source distribution along the screen. In  pursuing a numerical 
solution it was found that the iterations did not converge for some cases, and for 
the well-behaved cases the vortex strength was about one-tenth of the source 
strength and consequently had little effect on the flow. Since the improvement in 
accuracy was minimal, the addition of a vortex distribution is not considered 
worthwhile. 

It should be pointed out that our proposed mathematical model is useful for 
more general situations. This paper has fully explored the model for the situation 
of a plane screen of uniform solidity in a channel with an approaching two- 
dimensional uniform flow, and it may be apparent that other situations can be 
treated using the model, though generally not with analytical methods. The 
following variations are possible, providing changes are made in the analysis as 
noted: (a) a screen of arbitrary shape can be dealt with straightforwardly by 
including g ( q )  in the general equations for uI and oI [thus revising H ( x ,  y, 7) and 
P(x, y, 7)], and by noting that the inclination of the screen is a local property, 
i.e. CL = a(7); ( 6 )  a screen of non-uniform solidity requires that the two matching 
conditions be revised to allow K = K(7);  (c )  a non-uniform upstream velocity 
distribution can be treated by including ul($) in the second matching condition 
(it cancels out for uniform flow) and by noting that u2 is no longer a constant, 
i.e. uz = uz($). These three cases, or any combination of them, can be treated by 
the present numerical method with some slight modifications to the computer 
program. It may be apparent that the present source model can also be applied 
to some three-dimensional problems. If a finite screen is located in a semi- 
infinite flow field, then a solution of the flow field is possible, using in this case 
three-dimensional potential theory, and not functions of a complex variable. 

The authors are grateful for the financial support of this research by the 
National Research Council of Canada, and for the help given by W.Douglas 
Baines, who proposed the problem and encouraged the work throughout. 

Appendix. Determining the horizontal velocity at the screen 
Section 5.1 shows that, for a normal screen, the horizontal velocity is 
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where 

cosh nx - cos n(y - 7) cosh nx - cos n(y + y) 
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On the screen, where x + 0, H(0 ,  y, q )  -+ 0 providing 7 =!= y. (We need not worry 
about the other singularity 7 = - y since q is restricted to the interval (0, A )  for 
this function.) At the point 7 = y, L’Hopital’s rule shows that 

lim H(x, y, 7) --f 5 co. 
x++o 

r1-w 

Consequently H(0,  y, 37) becomes an impulse function of the form f A S(y - y), 
where the notation 5 is used to indicate whether the screen is approached from 
the right ( + ) or left ( - ). To characterize H ( 0 ,  y, 7) fully, the constant A must be 
determined, and this can be accomplished by finding the integral of the first 
term of H ,  i.e. finding 

1 6  sinh nx 
I = x+o lim - 4 1 a  coshnx-cosn(y-7) d v ,  

where the interval (a, b )  includes the point q = y. The second term in H does not 
contribute since it is identically zero when x = 0. By using the following indefinite 
integral, which is not well known but which can be verified straightforwardly by 
differentiation, 

it follows that 

Asx+O+, 

tanh Bnx 
tan [+n(y - a)]  

] - tan-1 ( tanh $nx 
tan [+n(y - b)]  

2nI = tan-1 

= tan-l(O - )  - tan-l (0  + ); 

2nI = tan-l(O + ) - tan-l(O - ). 

The argument for the tangent function is assumed to have an interval of 2n, say 
from - n to n, and thus the value of tan-l(O + ) may be 0 or - n, corresponding to 
the f i s t  and third quadrants; likewise for tan (0  - ), the choice is + n or 0, corre- 
sponding to the second and fourth quadrants. The choice of values for tan-1 (0 + ) 
and tan-l(O - ) appears somewhat arbitrary, but must be consistent with the 
physics of the situation. Since the integral I cannot be zero, tan-l(O+) and 
tan+ (0 - ) cannot simultaneously be zero. The two possible solutions then are 
tan-l(O-) = 0, tan-l(O+) = -n and tan-l(O-) = n, tan-l(O+) = 0. Both 
solutions, however, give the same values for 1, namely 

similarly, as x -+ 0 - , 

I ( X - + O * )  = k i .  

lim H(x, y, q) = ? @(y- 7). Therefore 
x+o * 
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Consequently, 
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